If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+20t-300=0
a = 4.9; b = 20; c = -300;
Δ = b2-4ac
Δ = 202-4·4.9·(-300)
Δ = 6280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6280}=\sqrt{4*1570}=\sqrt{4}*\sqrt{1570}=2\sqrt{1570}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{1570}}{2*4.9}=\frac{-20-2\sqrt{1570}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{1570}}{2*4.9}=\frac{-20+2\sqrt{1570}}{9.8} $
| 2(x-6)+10=2(2x+2) | | 4.9^2+20t-300=0 | | x/100=2/20 | | 4.9t^2+20t+300=0 | | 6n+8=40(n=6) | | (4D^4-4D^3-23^2+12y+36)y=0 | | r²−8r=−8 | | (6+v)(2v+3)=0 | | 200/x=17/3 | | 200/x=52/3 | | 15x+(-12x)+3x=+ | | 5x-3/2x=5 | | 12k^2+32k–44=0 | | 65-4=8(2+1/4d) | | 0.02*x^2-30*x=-18000 | | 5÷2x=20x= | | X=169+3y | | 13u-6u=28 | | 3p+9=34 | | 7x^2-25x-126=0 | | 0.5*240+8*(240-x)=136 | | 4x+6=14,x | | 90+2x-2+x-5=180 | | 2x^2+9x-7+8/x-2=0 | | X/2-x/2=2/3x-2 | | 2x/x+15=4/5 | | 2x/x+12=4/5 | | 7/2x=4+10x | | 8/56x=48 | | 5x+15=180° | | 11=13-0.01x | | 8x2=6x+9 |